Desde # 1997

WASTE Magazine

WASTE Magazine

WASTE MAGAZINE /  MERCHE S. CALLE * JUAN ENRIQUE GÓMEZ * © Textos, fotos, vídeos
© JUAN ENRIQUE GÓMEZ * MERCHE S. CALLE




ASTRONOMÍA * web especial * UNA MIRADA AL COSMOS

Instrumentación
Tecnología fuera de este mundo



En Astrofísica, el instrumento ideal está limitado por los tres componentes que atraviesa la luz  antes de convertirse en información astronómica: la atmósfera, el telescopio  y el detector.  De ellos, el único que no podemos modificar a nuestro antojo es la atmósfera terrestre aunque, quizás, podamos obviar o atemperar sus efectos.

Foto izquierda:  imagen de las cuatro cúpulas que albergan el primer interferómetro de gran diámetro en luz visible e infrarroja. El VLT (en español, Telescopio Muy Grande) está situado en Cerro Paranal  (Chile) y es un proyecto del Observatorio Europeo del Sur. (ESO).
IFotos derecha: estas dos imágenes muestran el principio de la óptica adaptativa, en la imagen superior el frente de onda es deformado a su paso por la atmósfera. En la imagen inferior vemos cómo perturbaciones  inducidas en el espejo del telescopio pueden corregir estas deformaciones. Créditos: (ESO).

Tecnología fuera de este mundo
La instrumentación en Astronomía centra su desarrollo en cuatro aspectos fundamentales: sensibilidad, resolución espacial, rango espectral y resolución espectral. De este modo, el mejor  instrumento es aquel capaz de captar una mayor porción de la luz proveniente de los objetos celestes en menos tiempo, de separar mejor la localización de esta luz, de observar los astros en cualquier longitud de onda y de distinguir la luz emitida en dos longitudes de onda muy próximas.
La atmósfera terrestre limita el rango de longitudes de onda observable desde tierra a la luz visible,  absorbe una parte importante de la intensidad luminosa y difumina la luz de los astros, lo que conlleva una disminución de la sensibilidad. Pero sobre todo, la atmósfera degrada la nitidez de la imagen. La turbulencia atmosférica genera pequeñas lentes que se forman y deshacen  en un corto período de tiempo y disminuyen la resolución espacial de nuestras observaciones. Los astrónomos han abordado la solución de estos problemas desde tres ángulos diferentes: la astrofísica espacial, la óptica adaptativa  y la interferometría.

Astrofísica espacial
La solución directa: ponemos los instrumentos por encima de la atmósfera y evitamos sus problemas. Esta solución ha permitido poner en órbita detectores en cualquier longitud de onda y aumentar la sensibilidad y calidad de imagen, pero está constreñida por su alto coste y por el tamaño del colector. Satélites como IUE (en ultravioleta), el telescopio espacial Hubble (en visible e infrarrojo), Chandra o XMM  (en rayos X) nos han proporcionado  una visión del Universo inexplorada hasta hace 20 años. La misiones espaciales Mariner, Voyager, Viking y, recientemente, Cassini-Huygens, están cambiando continuamente nuestra visión del Sistema Solar y esperamos proporcionen las claves de su formación.
Óptica adaptativa
Se trata de la solución óptima para aumentar la calidad de imagen desde tierra. Utilizando una estrella vecina (a veces  artificial) como patrón, se miden las deformaciones producidas por la atmósfera, se modifica la estructura superficial del espejo del telescopio y se corrigen las deformaciones. El principal inconveniente de esta técnica estriba en que sólo puede aplicarse a un área del cielo pequeña, muy lejos del campo de visión que alcanzan los telescopios actuales. Los grandes colectores (diámetros de 8-10 metros) como Keck, Gemini, VLT y el futuro GTC (telescopio español de 10 m)  disponen de esta tecnología, que ya ha producido imágenes impactantes.

Interferometría
La interferometría permite mejorar la resolución espacial de forma considerable. La enorme distancia que nos separa de los objetos celestes provoca que veamos confundidos en el cielo objetos que en realidad se hallan separados. El diámetro del aparato que recoge la radiación determinará su capacidad a la hora de separar los objetos, aunque aumentar el tamaño de los telescopios parece no ser la opción adecuada. Los radioastrónomos nos dieron la respuesta hace ya cuarenta años: construyeron una red de telescopios cuyo diámetro equivalente fuera igual a la distancia entre los telescopios individuales. Cada telescopio debía recibir el mismo plano de luz en el mismo instante y, dado que los telescopios se sitúan en distinto lugar geográfico, era imposible. La solución consiste en jugar con los relojes hasta obtener el mismo frente de ondas  emitido por el objeto en un instante dado. Esta técnica fue diseñada para las longitudes de onda en radio (sirvan de ejemplo los instrumentos VLA, EVN, VLBA y ALMA, este último en fase de construcción), aunque su aplicación al rango visible ya ha dado sus primeros frutos  con los  telescopios del VLT del Observatorio Europeo del Sur (Chile). También se encuentra en proceso de diseño un interferómetro infrarrojo espacial (DARWIN) liderado por la ESA, que se espera nos dé las primeras imágenes de un planeta extrasolar hacia el 2020. 



Actividades de la Unidad de
Desarrollo Instrumental y Tecnológico (UDIT)



La Astrofísica precisa de instrumentos, tanto para observatorios terrestres como espaciales, para progresar con nuevos descubrimientos. La Unidad de Desarrollo Instrumental y Tecnológico, UDIT, se encarga de procurar esta instrumentación: tomando como base los avances tecnológicos más novedosos, diseña y construye instrumentos que satisfagan las difíciles especificaciones impuestas por la óptica, la mecánica y la electrónica. Dicha Unidad estuvo centrada, en sus comienzos, en la puesta en marcha del recién creado Observatorio de Sierra Nevada (OSN), tanto en la dotación de la instrumentación científica adecuada como en la construcción de fotómetros multiespectrales para el estudio de la atmósfera terrestre desde cohetes de sondeo. En una etapa más reciente se renovó toda la instrumentación del OSN, lo que incluyó el diseño electrónico y electro-mecánico de los nuevos telescopios, la construcción de dos consolas para su control automático y de un espectrógrafo multi-objetos (ALBIREO).
También comenzaron nuevas colaboraciones internacionales para diseñar instrumentación espacial, como las realizadas en las misiones Mars-94 y Cassini-Huygens.

Gracias a estas cooperaciones, esta Unidad fue reconocida entre los Institutos de Investigación y empezó a colaborar en nuevas misiones de la Agencia Europea del Espacio, ESA, como Mars-Express o Rosetta, que serán lanzadas al espacio en enero de 2003. En la primera se diseñó la Unidad Central de Proceso de Datos de un Espectrómetro de Fourier y en la segunda se ha construido parte de dos instrumentos: OSIRIS, compuesto por dos cámaras de alta resolución que tomarán imágenes del núcleo del cometa Wirtanen, y donde el IAA participa con la tarjeta controladora de mecanismos; y GIADA, analizador y acumulador de impactos de grano y de polvo que estudiará la evolución de flujo del polvo de los cometas y las propiedades dinámicas del grano. Se ha planteado como un instrumento multi-sensor y el Instituto contribuye con la electrónica de control del instrumento.
Para mejorar las observaciones terrestres desde el OSN se está finalizando un radiómetro infrarrojo que permitirá analizar la idoneidad del cielo de Sierra Nevada para trabajar en este rango del espectro y cuyo objetivo final será la instalación de una cámara infrarroja en el OSN.

También se ha proyectado un laboratorio de scattering donde, midiendo la matriz de dispersión de la luz para distintas muestras minerales, se realizarán importantes estudios que aporten nueva información sobre atmósferas de planetas, cometas, materia interplanetaria y polvo interestelar.
El estudio del origen, evolución y destino final del campo magnético solar ha implicado al IAA en un proyecto muy ambicioso, el diseño del magnetógrafo ImaX (Imaging Magnetograph eXperiment) que albergará la plataforma SUNRISE, un globo estratosférico con lanzamiento en la Antártida en el verano austral del 2007. La UDIT interviene con el diseño de la electrónica de control.
Por último, el IAA forma parte del equipo que estudia la viabilidad de la misión espacial Eddington, destinada a la búsqueda de exoplanetas y al estudio de las pulsaciones en estrellas para determinar su estructura interna. 



UNA MIRADA AL COSMOS

Páginas especiales en Waste Magazine





VIDEOCOLECCIÓN



VÍDEOS DE ESPACIOS NATURALES * RUTAS Y PAISAJES

VÍDEOS: Paisajes con Historia, es una serie de reportajes para dar a conocer rutas y parajes con cualidades naturales y patrimoniales. Grabaciones exclusivas de Waste Magazine.
 (Reportajes, fotogalerías y vídeos)



PAISAJES Y BIODIVERSIDAD

Una serie de reportajes para mostrar la riqueza natural que nos rodea, sus ecosistemas y a sus singulares habitantes. 
Granada y las tierras del sureste de Andalucía poseen la mayor diversidad biológica de Europa, parajes únicos para vivir en tiempos de estío



RUTAS, PARAJES Y PAISAJES

Reportajes sobre rutas y lugares de especial interés por su naturaleza e historia. Fotogalerías y vídeos


WASTE * NATURALEZA, MEDIO AMBIENTE

Los datos que necesitas conocer:

Guía de Plantas
Guía de Mariposas
Guía de especies marinas
Guía de Moluscos
Rutas y paisajes
Espacios naturales

WASTE * INICIO


PROMOCIONATE EN WASTE
¿Quieres dar a conocer tus productros, tu empresa ...?


Te ofrecemos la plataforma de WASTE Magazine para promocionar tus productos, actividades empresariales, investigaciones, etc, mediante el sistema de páginas informativas y espacios esponsorizados. es la forma más eficaz y rápida de dar a conocer tu oferta, con tarifas especiales. Contacta con nosotros