Desde # 1997

WASTE Magazine

WASTE Magazine

WASTE MAGAZINE /  MERCHE S. CALLE * JUAN ENRIQUE GÓMEZ * © Textos, fotos, vídeos
© JUAN ENRIQUE GÓMEZ * MERCHE S. CALLE




ASTRONOMÍA * web especial * UNA MIRADA AL COSMOS

Cosmología
El Universo a gran escala




Los resultados de los últimos experimentos sobre la radiación de fondo de microondas parecen indicar que el Universo a gran escala tiene estructura plana, es decir, para triángulos suficientemente grandes el teorema de Pitágoras es válido. En este caso, el Universo se encuentra en expansión lineal. Esto no contradice la existencia de fuertes distorsiones locales alrededor de los cuerpos celestes masivos. Y todo ello en perfecto acuerdo con la teoría de A. Einstein.

El Fondo Cósmico de Microondas y la Geometría del Universo


LAS IMÁGENES DEL BOOMERANG DETERMINAN LA GEOMETRÍA DEL UNIVERSO.
Las simulaciones cosmológicas predecían que, si la  geometría era plana, las imágenes del Boomerang debían estar constituidas por puntos fríos y calientes distribuidos como en la imagen superior, ya que una geometría curva hubiera desviado los rayos de luz y distorsionado las imágenes.  La comparación con la imagen del Boomerang indica que el Universo es casi totalmente plano.

Los últimos resultados obtenidos en el marco del proyecto Boomerang (siglas en inglés de Observaciones en Globo de la Radiación Milimétrica Extragaláctica y Geofísica), que estudia la distribución de pequeñas variaciones de intensidad en el fondo cósmico de microondas (ver friso inferior), concluyen que el Universo es plano, es decir, que respeta la geometría euclidiana a gran escala. Se trata de la misma geometría que aprendemos en la escuela, en la que la línea más corta entre dos puntos es la recta, los ángulos de un triángulo siempre suman 180 grados y las líneas paralelas nunca se separan ni se cortan. No ocurriría lo mismo en una superficie curva, que contempla dos posibilidades: la curvatura positiva, representada por una esfera, en la que los ángulos de un triángulo suman siempre más de 180 grados, y la curvatura negativa, similar a la forma de una silla de montar, en la que la suma siempre es inferior a 18o; en ambos casos la suma dependerá del tamaño del triángulo.

Hemos de recalcar que las curvaturas de las que hablamos en estos experimentos cosmológicos hacen mención a la estructura a gran escala del Espacio-Tiempo o del Universo, como si la materia estuviese uniformemente distribuida, y que nada tiene que ver con las curvaturas locales generadas como consecuencia de la presencia de cuerpos celestes masivos, y que pueden llegar a ser extremadamente grandes. Dichas curvaturas locales dan lugar a verdaderas distorsiones del Espacio-Tiempo que se ponen de manifiesto incluso ópticamente por la aberración de las imágenes de estrellas que llegan hasta nosotros después de atravesar campos gravitatorios intensos.

Tres posibles historias del Universo.




 La evolución del Universo puede esquematizarse en tres tipos de Espacio-Tiempo, dependiendo de la cantidad y tipo de materia que contiene.  Según las leyes de la física, si el Universo contuviera mucha materia, su fuerza gravitatoria frenaría la expansión y provocaría un colapso final (fig.1); si contuviera muy poca se expandiría para siempre de modo acelerado (fig.3). Existe, no obstante, una densidad crítica, que se sitúa en la línea divisoria entre las dos y predice la expansión indefinida a velocidad constante; en este caso, el Universo es plano, es decir, tiene curvatura nula (fig. 2).

El Universo a gran escala
El proceso de interpretación física de cualquier fenómeno natural está siempre amenazado por el riesgo de caer en un círculo vicioso: para plasmar un conjunto de datos experimentales en leyes físicas, capaces de predecir los resultados de nuevos procesos, se precisa de un modelo (matemático) concreto, lo que  condiciona el alcance o significado de tales datos. Y si esto es así para experimentos realizados en un laboratorio convencional (terrestre, digamos), qué cuidado no habría que tener cuando los datos experimentales conciernen al propio Universo, el laboratorio es el Espacio-Tiempo y los instrumentos se rigen por leyes físicas que han sido establecidas en su seno y comprobadas a escalas relativamente insignificantes.

Por Espacio-Tiempo entendemos la trayectoria del Universo a lo largo del tiempo, y es la evolución del Universo a partir de un instante dado lo que constituye el objeto de estudio de la Cosmología. En concreto, cabe preguntarse por ciertos parámetros característicos como son la forma del Universo en un instante determinado (como el instante actual, un supuesto instante inicial o un posible final), su tamaño, el tipo de materia de que se compone, densidad, etc. y, lo que es muy importante, la regla de medida de distancias que ha de usarse. Quizá la geometría que todos conocemos no sea la apropiada para medir todos los casos, y he aquí un ejemplo: tenemos una sábana elástica en donde se ha depositado una bola: la superficie sigue siendo plana a grandes rasgos, pero con una pequeña curvatura local que exige otra regla de medida. Algo similar ocurre en el Universo, cuya medida exige dos tipos de reglas según la escala que, aunque diferentes, no son por ello incompatibles. 

El modelo actual

Créditos: M. Begelman y M. Rees.

El modelo que se usa en la actualidad para interpretar los datos cosmológicos consiste esencialmente en un conjunto de simplificaciones impuestas a las ecuaciones de Einstein que describen la dinámica de los campos gravitatorios. Estas suposiciones se justifican por las observaciones sobre homogeneidad a grandes rasgos en todas las direcciones y desde todos los puntos del espacio, y constituyen lo que se conoce como Principio Cosmológico. A esto hay que añadir  una modelización, a su vez, de la estructura de las leyes físicas a pequeñas escalas de distancia, o Física de Partículas Elementales, que establece el tipo de materia que puede servir de fuente para la creación del campo gravitatorio en las ecuaciones de Einstein. Existen tres tipos de materia: la materia normal, constituyente de estrellas y polvo estelar, esto es, la luz y los componentes de los núcleos atómicos; la materia oscura, que no vemos pero cuya existencia se encuentra asociada a las ondas gravitatorias y a los neutrinos, partículas sin carga y con una masa pequeñísima, pero que son relevantes por la gran cantidad que existe; y la denominada materia exótica, asociada a campos y fenómenos físicos a los que sólo se les puede atribuir sentido real dentro de un esquema más preciso y general que incorpora la Teoría Cuántica en los modelos de cosmología. Los efectos indirectos de estos objetos exóticos se conocen modernamente bajo el nombre, también exótico, de quintaesencia.

Interrogantes futuros

El reto de la Cosmología actual es determinar la curvatura del Universo a la luz de los datos experimentales sobre la distancia de los objetos astronómicos más lejanos, medida experimentalmente a través de las supernovas, sobre la distribución de densidades de masa y sobre la composición o tipo de materia. La curvatura espacial determina la evolución en el tiempo y, por tanto, si el Universo se vuelve a cerrar (Big-Crunch) o no. Para responder a estos interrogantes no se deben menospreciar los riesgos de interpretación de los datos experimentales, antes comentados, como consecuencia del empleo de un modelo específico de evolución del Universo y de las interacciones locales o no gravitatorias entre las partículas que componen la materia. 

Se estudia la influencia de los fenómenos cuánticos macroscópicos sobre las ecuaciones clásicas de la Cosmología: Quintaesencia.
Se profundiza en la teoría cuántica de la gravitación y unificación con el resto de las interacciones. Implicaciones en el Modelo Estándar.
Se analiza la distribución de materia a gran escala. Evolución cósmica.  Lo que no se sabe...  Cuál es la influencia del modelo cosmológico utilizado en la interpretación de  medidas Cosmológicas a gran escala, como las de Boomerang?
Es la energía  oscura  el ingrediente dominante en el Universo?
Qué es realmente la gravedad cuántica y qué sería la cosmología cuántica?
Cuál es la verdadera naturaleza de los GRB?



UNA MIRADA AL COSMOS

Páginas especiales en Waste Magazine





VIDEOCOLECCIÓN



VÍDEOS DE ESPACIOS NATURALES * RUTAS Y PAISAJES

VÍDEOS: Paisajes con Historia, es una serie de reportajes para dar a conocer rutas y parajes con cualidades naturales y patrimoniales. Grabaciones exclusivas de Waste Magazine.
 (Reportajes, fotogalerías y vídeos)



PAISAJES Y BIODIVERSIDAD

Una serie de reportajes para mostrar la riqueza natural que nos rodea, sus ecosistemas y a sus singulares habitantes. 
Granada y las tierras del sureste de Andalucía poseen la mayor diversidad biológica de Europa, parajes únicos para vivir en tiempos de estío



RUTAS, PARAJES Y PAISAJES

Reportajes sobre rutas y lugares de especial interés por su naturaleza e historia. Fotogalerías y vídeos


WASTE * NATURALEZA, MEDIO AMBIENTE

Los datos que necesitas conocer:

Guía de Plantas
Guía de Mariposas
Guía de especies marinas
Guía de Moluscos
Rutas y paisajes
Espacios naturales

WASTE * INICIO


PROMOCIONATE EN WASTE
¿Quieres dar a conocer tus productros, tu empresa ...?


Te ofrecemos la plataforma de WASTE Magazine para promocionar tus productos, actividades empresariales, investigaciones, etc, mediante el sistema de páginas informativas y espacios esponsorizados. es la forma más eficaz y rápida de dar a conocer tu oferta, con tarifas especiales. Contacta con nosotros