Desde # 1997

WASTE Magazine

WASTE Magazine

WASTE MAGAZINE /  MERCHE S. CALLE * JUAN ENRIQUE GÓMEZ * © Textos, fotos, vídeos
© JUAN ENRIQUE GÓMEZ * MERCHE S. CALLE




ASTRONOMÍA * web especial * UNA MIRADA AL COSMOS

El ciclo de vida de las estrellas
Longevidad estelar. Formación de la Vía Láctea




La longevidad de las estrellas oscila entre millones y miles de millones de años. Aunque este tiempo excede con mucho al de nuestra vida, el ser humano ha aprendido que las estrellas nacen, evolucionan y mueren, y puede estudiar todas las etapas de su vida. 
Ç

(foto 1) Estrellas Jóvenes. Las Pléyades, visibles a simple vista en la constelación de Tauro, constituyen un cúmulo joven con unos treinta millones de años de edad.  Aún se pueden ver, en forma de neblina, los restos de la materia de la que se formó. Créditos: D. Malin & Anglo-Australian Observatory.

(foto 2) Estrellas ancianas. Los cúmulos globulares son las agrupaciones de estrellas más viejas de la Galaxia. Éste, M80, contiene cientos de miles de estrellas unidas debido a la atracción gravitatoria. Todas las estrellas de M80 se formaron hace quince mil millones de años. Créditos: Hubble Heritage Team (AURA)/STScI/NASA).

El ciclo de vida de las estrellas
Supongamos que una mosca quiere estudiar la vida de los seres humanos. Una mosca vive sólo unos pocos días, así que no podría concluir nada observando a una sola persona. Sin embargo, si la mosca visitase una maternidad, un colegio, diferentes familias, un hospital, etc., le sería fácil deducir que en la vida de un ser humano existe un principio, un desarrollo y un final. El punto clave radica en la observación de muchos grupos de seres humanos de diferentes edades. De forma similar actuamos los astrónomos con respecto a las estrellas. La ingente cantidad de ellas existente nos permite observar todas sus edades y no sólo concluir que las estrellas nacen, evolucionan y mueren, sino, además, estudiar y describir su vida. Hertzprung y Russell llegaron a esta conclusión a principios del siglo pasado cuando representaron la relación entre el brillo y la temperatura de gran cantidad de estrellas en un diagrama, que hoy conocemos por el nombre de ambos (ver friso página 7). La inmensa mayoría de estrellas se encontraba en una banda del diagrama que correspondía a la etapa de madurez de las mismas. En dicha banda, la secuencia principal, se encuentra actualmente nuestro Sol.
 
(Foto) Estrellas en formación.
La nebulosa de Orión. En la constelación de Orión se puede ver una de las regiones donde se están formando estrellas de todo tipo a partir de una inmensa nube de gas, moléculas y polvo
interestelar. Crédito: C.R. O'Dell & S.K. Wong & NASA.


Formación estelar
Las estrellas se forman en nubes de gas y moléculas que se concentran por efecto de su propia gravedad. El proceso es violento y lleva consigo la formación de discos, que alimentan de materia a la estrella naciente (o protoestrella), y expulsiones de materia a cientos de kilómetros por segundo. La temperatura y densidad en el centro de la protoestrella aumentan conforme se acumula la materia hasta permitir que los átomos de hidrógeno, el elemento más abundante del Universo, se fusionen para formar átomos de helio en un proceso que libera grandes cantidades de energía. Cuando comienza este proceso, que constituye el motor de una estrella durante su vida, decimos que se ha formado una nueva estrella: una enorme esfera gaseosa cuya parte más externa, la atmósfera, podemos ver de forma directa. Poco queda ya alrededor de la estrella de la materia que la formó. Sin embargo, la materia en el disco puede condensarse y formar planetas, cometas o asteroides, es decir, un sistema planetario.

Las estrellas tienden a formarse en cúmulos. Todas las estrellas de un cúmulo se forman al mismo tiempo y, aunque coinciden en edad, no todas evolucionan al mismo ritmo: los procesos internos son lentos en las estrellas con poca masa -que pueden vivir miles de millones de años- y más rápidos en las estrellas de mayor masa, que completan su ciclo vital en pocos millones de años.
La formación de una estrella solitaria, como el Sol, no es lo más común. Además de formarse en cúmulos, dos tercios de las estrellas forman parte de sistemas estelares dobles ligados gravitacionalmente. El estudio de las órbitas de las estrellas dobles permite deducir las masas de las componentes. Estos valores, combinados con otras propiedades y modelos teóricos, hacen posible obtener calibraciones para estimar la masa de otras muchas estrellas.

Estrellas adultas
La vida de una estrella ya formada, como el Sol, no resulta plácida. Sus procesos físicos internos dan como resultado fenómenos observables en su atmósfera: vientos estelares, llamaradas, manchas frías y campos magnéticos. En algunas estrellas, las inestabilidades internas se traducen en pulsaciones y convulsiones, similares a un terremoto, cuyo estudio proporciona valiosa información sobre sus  procesos internos.

Muerte de la estrella
El agotamiento del hidrógeno en el centro marca el principio del fin en la vida de una estrella. Para mantener su equilibrio, la estrella crece de forma masiva y se convierte en una gigante roja, con un tamaño similar a la distancia desde la Tierra -o incluso desde Júpiter- al Sol. En esta etapa, la estrella expulsa lentamente la atmósfera, que forma una envoltura gaseosa alrededor del núcleo.
La masa inicial de la estrella desempeña un papel crucial en su final. Los modelos teóricos y las observaciones indican que si la masa estelar no alcanza unas siete veces la masa del Sol, la estrella expulsará toda su atmósfera y dejará al descubierto un núcleo caliente que ilumina la envoltura. Se forma entonces una nebulosa planetaria cuyo núcleo, una enana blanca con temperaturas de decenas de miles grados y tamaño similar al de la Tierra, es incapaz  de producir energía y se enfría lentamente hasta perderse de vista.
Las estrellas que superan en unas siete veces la masa del Sol explotan como supernovas, uno de los fenómenos más violentos del Universo: lanza la materia estelar al espacio a velocidades de miles de kilómetros por segundo y sólo queda el núcleo central, de pocos kilómetros de diámetro, en el que se concentra una masa mayor que 1,4 veces la solar. Este núcleo  puede desarrollarse como una estrella de neutrones que gira rápidamente -un púlsar- o, si su masa es mayor que 3,2 veces la del Sol, como un agujero negro -una concentración de materia tal que ni la luz puede escapar de la acción de su gravedad.
La materia que expulsan las estrellas, principalmente al final de su vida, retorna al medio interestelar donde, tras largos procesos dinámicos, se agrupará y desencadenará la formación de una siguiente generación de estrellas. Dicha materia se encuentra enriquecida por nuevos elementos químicos que se fabricaron en los interiores de la primera generación de estrellas o, incluso, en su propia muerte explosiva en forma de supernova. Tales elementos químicos son los que podemos encontrar en la Tierra y que conforman, ciertamente, el material de que estamos hechos los seres vivos.
Pulsaciones de una estrella. Las simulaciones por ordenador proporcionan información sobre los procesos en el interior de las estrellas como, por ejemplo, sus modos de pulsación. Aunque la amplitud de la pulsación está exagerada en la figura, la simulación nos muestra que algunas estrellas pueden pulsar de forma bastante exótica. Creditos: B. Guenther (U. of St. Mary's).




Cementerios estelares:
A Fotos superiores y foto inferior derecha: nebulosas planetarias. Las nebulosas planetarias, el final de la vida de una estrella similar al Sol, presentan una enorme variedad de formas cuyo origen es, en buena parte, desconocido. En el sentido de las agujas del reloj: NGC2392 (Nebulosa del Esquimal), IC418, NGC6543 (Nebulosa del Ojo de Gato), Mz3 (Nebulosa de la Hormiga).
Créditos: Hubble Heritage Team/NASA/ESA/A,  Fruchter & ERO Team (STScI)/R. Sahai, J. Trauger and the WFPC2 Science Team.

Foto inferior izquierda izquierda: la Nebulosa del Cangrejo. La Nebulosa del Cangrejo es el resultado de la explosión de una supernova observada y documentada por los astronómos chinos en el año 1054. El brillo en el momento de la detonación la hacía visible en pleno día. En el centro de la nebulosa se encuentra una estrella de neutrones, un púlsar, que gira a una velocidad de treinta vueltas por segundo. Créditos: FORS Team, VLT, ESO.
Se estudian las etapas inciales de la formación de estrellas masivas y no masivas con observaciones del gas y moléculas por medio de técnicas de interferometría en radio.
Investigamos los procesos de formación de estrellas por medio del estudio de cúmulos muy jóvenes usando espectroscopía y fotometría óptica e infrarroja.
Estudio de los procesos de acrecimiento y eyección de materia en las protoestrellas a traves de observaciones fotométricas y espectroscópicas en el óptico, infrarrojo y rayos X.

Se estudian sistemas binarios que contienen estrellas de neutrones o agujeros negros para deducir el rango de masas de estos objetos.
Se crean modelos teóricos de la evolución estelar para estrellas de diferente masa.
Se investiga la estructura interna de las estrellas por medio de su variabilidad y sus oscilaciones con técnicas fotométricas de alta precisión desde tierra y con satélites.
Se investiga la formación y evolución de las nebulosas planetarias a través de observaciones de las envolturas y su dinámica.
Estudio de la expansión angular de supernovas por medio de técnicas interferométricas.  Lo que no sabemos...  Cómo se forman las estrellas? Muchos aspectos de la formación estelar son aún desconocidos, como los procesos de formación de estrellas masivas, cuántas estrellas se forman a partir de una nube y en qué rango de masas.
Cuál es el origen de la vida? Buena parte de la investigación futura estará centrada en la detección y estudio de planetas de tipo terrestre y de posibles indicios de actividad biológica en los mismos.
Cómo se generan los intensos campos magnéticos al final de la evolución estelar? Técnicas de muy alta resolución nos permitirán estudiar los campos magnéticos y su geometría para entender su origen y la influencia que tienen en la formación de las nebulosas planetarias y restos de supernova.
 



UNA MIRADA AL COSMOS

Páginas especiales en Waste Magazine





VIDEOCOLECCIÓN



VÍDEOS DE ESPACIOS NATURALES * RUTAS Y PAISAJES

VÍDEOS: Paisajes con Historia, es una serie de reportajes para dar a conocer rutas y parajes con cualidades naturales y patrimoniales. Grabaciones exclusivas de Waste Magazine.
 (Reportajes, fotogalerías y vídeos)



PAISAJES Y BIODIVERSIDAD

Una serie de reportajes para mostrar la riqueza natural que nos rodea, sus ecosistemas y a sus singulares habitantes. 
Granada y las tierras del sureste de Andalucía poseen la mayor diversidad biológica de Europa, parajes únicos para vivir en tiempos de estío



RUTAS, PARAJES Y PAISAJES

Reportajes sobre rutas y lugares de especial interés por su naturaleza e historia. Fotogalerías y vídeos


WASTE * NATURALEZA, MEDIO AMBIENTE

Los datos que necesitas conocer:

Guía de Plantas
Guía de Mariposas
Guía de especies marinas
Guía de Moluscos
Rutas y paisajes
Espacios naturales

WASTE * INICIO


PROMOCIONATE EN WASTE
¿Quieres dar a conocer tus productros, tu empresa ...?


Te ofrecemos la plataforma de WASTE Magazine para promocionar tus productos, actividades empresariales, investigaciones, etc, mediante el sistema de páginas informativas y espacios esponsorizados. es la forma más eficaz y rápida de dar a conocer tu oferta, con tarifas especiales. Contacta con nosotros